Cargando…
GMAIR: Unsupervised Object Detection Based on Spatial Attention and Gaussian Mixture Model
Recent studies on unsupervised object detection based on spatial attention have achieved promising results. Models, such as AIR and SPAIR, output “what” and “where” latent variables that represent the attributes and locations of objects in a scene, respectively. Most of the previous studies concentr...
Autores principales: | Zhu, Weijin, Shen, Yao, Liu, Mingqian, Aguirre Sanchez, Lizeth Patricia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9313923/ https://www.ncbi.nlm.nih.gov/pubmed/35898790 http://dx.doi.org/10.1155/2022/7254462 |
Ejemplares similares
-
Variational Information Bottleneck for Unsupervised Clustering: Deep Gaussian Mixture Embedding
por: Uğur, Yiğit, et al.
Publicado: (2020) -
Unsupervised assessment of microarray data quality using a Gaussian mixture model
por: Howard, Brian E, et al.
Publicado: (2009) -
Unsupervised Gaussian Mixture-Model With Expectation Maximization for Detecting Glaucomatous Progression in Standard Automated Perimetry Visual Fields
por: Yousefi, Siamak, et al.
Publicado: (2016) -
Research on a Segmentation Algorithm for the Tujia Brocade Images Based on Unsupervised Gaussian Mixture Clustering
por: He, Shuqi
Publicado: (2021) -
Spatial Alignment for Unsupervised Domain Adaptive Single-Stage Object Detection
por: Liang, Hong, et al.
Publicado: (2022)