Cargando…
TSTELM: Two-Stage Transfer Extreme Learning Machine for Unsupervised Domain Adaptation
As a single-layer feedforward network (SLFN), extreme learning machine (ELM) has been successfully applied for classification and regression in machine learning due to its faster training speed and better generalization. However, it will perform poorly for domain adaptation in which the distribution...
Autores principales: | Zang, Shaofei, Li, Xinghai, Ma, Jianwei, Yan, Yongyi, Gao, Jiwei, Wei, Yuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9313952/ https://www.ncbi.nlm.nih.gov/pubmed/35898785 http://dx.doi.org/10.1155/2022/1582624 |
Ejemplares similares
-
Transfer Extreme Learning Machine with Output Weight Alignment
por: Zang, Shaofei, et al.
Publicado: (2021) -
Domain Adaptation Based on Semi-Supervised Cross-Domain Mean Discriminative Analysis and Kernel Transfer Extreme Learning Machine
por: Li, Xinghai, et al.
Publicado: (2023) -
Spatial Alignment for Unsupervised Domain Adaptive Single-Stage Object Detection
por: Liang, Hong, et al.
Publicado: (2022) -
Unsupervised domain adaptation methods for cross-species transfer of regulatory code signals
por: Latyshev, Pavel, et al.
Publicado: (2023) -
Unsupervised Domain Adaptation for Image Classification and Object Detection Using Guided Transfer Learning Approach and JS Divergence
por: Goel, Parth, et al.
Publicado: (2023)