Cargando…
A Machine Vision Approach for Classification of Skin Cancer Using Hybrid Texture Features
The main purpose of this study is to observe the importance of machine vision (MV) approach for the identification of five types of skin cancers, namely, actinic-keratosis, benign, solar-lentigo, malignant, and nevus. The 1000 (200 × 5) benchmark image datasets of skin cancers are collected from the...
Autores principales: | Zareen, Syeda Shamaila, Guangmin, Sun, Li, Yu, Kundi, Mahwish, Qadri, Salman, Qadri, Syed Furqan, Ahmad, Mubashir, Khan, Ali Haider |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9313960/ https://www.ncbi.nlm.nih.gov/pubmed/35898782 http://dx.doi.org/10.1155/2022/4942637 |
Ejemplares similares
-
Efficient Liver Segmentation from Computed Tomography Images Using Deep Learning
por: Ahmad, Mubashir, et al.
Publicado: (2022) -
A Lightweight Convolutional Neural Network Model for Liver Segmentation in Medical Diagnosis
por: Ahmad, Mubashir, et al.
Publicado: (2022) -
Retracted: A Machine Vision Approach for Classification of Skin Cancer Using Hybrid Texture Features
por: Intelligence and Neuroscience, Computational
Publicado: (2023) -
A Comparative Study of Land Cover Classification by Using Multispectral and Texture Data
por: Qadri, Salman, et al.
Publicado: (2016) -
Machine Learning Based Automated Segmentation and Hybrid Feature Analysis for Diabetic Retinopathy Classification Using Fundus Image
por: Ali, Aqib, et al.
Publicado: (2020)