Cargando…
ILCS: An Improved Lightweight Convolution Structure and Mixed Interactive Attention for Steel Surface Defect Classification
The classification method of steel surface defects based on deep learning provides a basis for quality control of industrial steel manufacturing. Due to a large number of interference in the steel production area and the limited computing resources of the edge equipment deployed in the production ar...
Autores principales: | Pei, Yangjun, Hou, Mingyang, Han, Qi, Weng, Tengfei, Tian, Yuan, Chen, Guorong, Liu, Jinyuan, Wu, Chen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9313993/ https://www.ncbi.nlm.nih.gov/pubmed/35898768 http://dx.doi.org/10.1155/2022/7539857 |
Ejemplares similares
-
Convolutional Neural Network with Multiscale Fusion and Attention Mechanism for Skin Diseases Assisted Diagnosis
por: Li, Zhong, et al.
Publicado: (2022) -
A lightweight method for maize seed defects identification based on Convolutional Block Attention Module
por: Li, Chao, et al.
Publicado: (2023) -
A Lightweight Convolutional Neural Network Based on Visual Attention for SAR Image Target Classification
por: Shao, Jiaqi, et al.
Publicado: (2018) -
A multi-scale pooling convolutional neural network for accurate steel surface defects classification
por: Fu, Guizhong, et al.
Publicado: (2023) -
Hybrid Loss-Constrained Lightweight Convolutional Neural Networks for Cervical Cell Classification
por: Chen, Wen, et al.
Publicado: (2022)