Cargando…
Identification of new marker genes from plant single‐cell RNA‐seq data using interpretable machine learning methods
An essential step in the analysis of single‐cell RNA sequencing data is to classify cells into specific cell types using marker genes. In this study, we have developed a machine learning pipeline called single‐cell predictive marker (SPmarker) to identify novel cell‐type marker genes in the Arabidop...
Autores principales: | Yan, Haidong, Lee, Jiyoung, Song, Qi, Li, Qi, Schiefelbein, John, Zhao, Bingyu, Li, Song |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9314150/ https://www.ncbi.nlm.nih.gov/pubmed/35211979 http://dx.doi.org/10.1111/nph.18053 |
Ejemplares similares
-
Single Cell RNA-Seq and Machine Learning Reveal Novel Subpopulations in Low-Grade Inflammatory Monocytes With Unique Regulatory Circuits
por: Lee, Jiyoung, et al.
Publicado: (2021) -
Identifying Lung Cancer Cell Markers with Machine Learning Methods and Single-Cell RNA-Seq Data
por: Huang, Guo-Hua, et al.
Publicado: (2021) -
Identification of Human Cell Cycle Phase Markers Based on Single-Cell RNA-Seq Data by Using Machine Learning Methods
por: Huang, FeiMing, et al.
Publicado: (2022) -
Identifying In Vitro Cultured Human Hepatocytes Markers with Machine Learning Methods Based on Single-Cell RNA-Seq Data
por: Li, ZhanDong, et al.
Publicado: (2022) -
Single-cell specific and interpretable machine learning models for sparse scChIP-seq data imputation
por: Albrecht, Steffen, et al.
Publicado: (2022)