Cargando…

Lead exposure-induced changes in hematology and biomarkers of hepatic injury: protective role of Trévo™ supplement

Lead exposure has been linked to health challenges involving multiple organ failure. More than fifty percent of lead present in the human body is accumulated in the liver causing hepatic injury. A major mechanism of lead toxicity is oxidative stress. Trévo™ is a nutritional supplement with numerous...

Descripción completa

Detalles Bibliográficos
Autores principales: Ilesanmi, Omotayo B., Adeogun, Esther F., Odewale, Temitope T., Chikere, Bruno
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Society of Environmental Health and Toxicology & Korea Society for Environmental Analysis 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9314204/
https://www.ncbi.nlm.nih.gov/pubmed/35878915
http://dx.doi.org/10.5620/eaht.2022007
Descripción
Sumario:Lead exposure has been linked to health challenges involving multiple organ failure. More than fifty percent of lead present in the human body is accumulated in the liver causing hepatic injury. A major mechanism of lead toxicity is oxidative stress. Trévo™ is a nutritional supplement with numerous bioactive natural products with detoxifying and antioxidant properties. This study was designed to investigate the hepatoprotective effects of Trévo™ dietary supplements against lead-hepatotoxicity in male Wistar rats. Thirty-five healthy animals were divided into five groups of seven each as follows: Group I=control; II=15 mg/kg of lead acetate (PbA); III= 2 mL/kg of Trévo™ + PbA; IV= 5 mL/kg of Trévo™ + PbA;V=5 mL/kg of Trévo™. Animals were orally treated with Trévo™ for two days before co-administration with PbA intraperitoneally for 12 consecutive days. Animals were sacrificed 24 h after the last administration and blood were collected via cardiac puncture and processed for hematological parameters and assessment of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and albumin (ALB). The liver was excised and processed for markers of oxidative stress and histopathological examination. Intraperitoneal administration of 15 mg/kg of PbA caused a significant increase in serum concentration of AST, ALT, while the concentration of ALB was significantly decreased (P<0.001). PbA caused a significant reduction in packed cell volume, hemoglobin while the total white blood cell count, neutrophils, lymphocytes, monocytes, eosinophils, and basophils were increased. Oxidative stress was significantly pronounced in the liver of rats exposed to PbA as observed in the high concentration of malonedialdehyde, decreased concentration of glutathione, the activity of catalase, superoxide dismutase, and glutathione-S-transferase. Pretreatment with Trévo™ was able to significantly prevent the anemic, oxidative damage, and hepatic injury initiated by PbA. Histological examination also corroborated the biochemical results. In conclusion, the study reveals that Trévo™ is effective in attenuating PbA-induced hepatotoxicity in male Wistar rats.