Cargando…
MIXTURE of human expertise and deep learning—developing an explainable model for predicting pathological diagnosis and survival in patients with interstitial lung disease
Interstitial pneumonia is a heterogeneous disease with a progressive course and poor prognosis, at times even worse than those in the main cancer types. Histopathological examination is crucial for its diagnosis and estimation of prognosis. However, the evaluation strongly depends on the experience...
Autores principales: | Uegami, Wataru, Bychkov, Andrey, Ozasa, Mutsumi, Uehara, Kazuki, Kataoka, Kensuke, Johkoh, Takeshi, Kondoh, Yasuhiro, Sakanashi, Hidenori, Fukuoka, Junya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9314248/ https://www.ncbi.nlm.nih.gov/pubmed/35197560 http://dx.doi.org/10.1038/s41379-022-01025-7 |
Ejemplares similares
-
Effect of the 2020 hypersensitivity pneumonitis guideline on the pathologic diagnosis of interstitial pneumonia
por: Ozasa, Mutsumi, et al.
Publicado: (2023) -
Proposed method of histological separation between connective tissue disease-associated interstitial pneumonia and idiopathic interstitial pneumonias
por: Ozasa, Mutsumi, et al.
Publicado: (2018) -
Recognition of Connective Tissue Disease-Related Interstitial Pneumonia Based on Histological Score—A Validation Study of an Online Diagnostic Decision Support Tool
por: Ozasa, Mutsumi, et al.
Publicado: (2021) -
Sensitivity of transbronchial lung cryobiopsy in the diagnosis of different interstitial lung diseases
por: Zaizen, Yoshiaki, et al.
Publicado: (2022) -
Histologic factors associated with nintedanib efficacy in patients with idiopathic pulmonary fibrosis
por: Nemoto, Masahiro, et al.
Publicado: (2021)