Cargando…
QRS detection and classification in Holter ECG data in one inference step
While various QRS detection and classification methods were developed in the past, the Holter ECG data acquired during daily activities by wearable devices represent new challenges such as increased noise and artefacts due to patient movements. Here, we present a deep-learning model to detect and cl...
Autores principales: | Ivora, Adam, Viscor, Ivo, Nejedly, Petr, Smisek, Radovan, Koscova, Zuzana, Bulkova, Veronika, Halamek, Josef, Jurak, Pavel, Plesinger, Filip |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9314324/ https://www.ncbi.nlm.nih.gov/pubmed/35879331 http://dx.doi.org/10.1038/s41598-022-16517-4 |
Ejemplares similares
-
The relationship between ECG predictors of cardiac resynchronization therapy benefit
por: Halamek, Josef, et al.
Publicado: (2019) -
Intracerebral EEG Artifact Identification Using Convolutional Neural Networks
por: Nejedly, Petr, et al.
Publicado: (2018) -
Ventricular dyssynchrony assessment using ultra-high frequency ECG technique
por: Jurak, Pavel, et al.
Publicado: (2017) -
Multicenter intracranial EEG dataset for classification of graphoelements and artifactual signals
por: Nejedly, Petr, et al.
Publicado: (2020) -
Bipolar anodal septal pacing with direct LBB capture preserves physiological ventricular activation better than unipolar left bundle branch pacing
por: Curila, Karol, et al.
Publicado: (2023)