Cargando…

Activation of the JNKs/ATM-p53 axis is indispensable for the cytoprotection of dermal fibroblasts exposed to UVB radiation

Although UVB radiation is mainly absorbed by the epidermis, ~5–10% of its photons reach and affect the upper part of the dermis. Physiologically relevant UVB doses, able to provoke erythema, induce apoptosis in human dermal fibroblasts in vitro, as well as in the dermis of SKH-1 mice. Given the spar...

Descripción completa

Detalles Bibliográficos
Autores principales: Mavrogonatou, Eleni, Angelopoulou, Maria, Rizou, Sophia V., Pratsinis, Harris, Gorgoulis, Vassilis G., Kletsas, Dimitris
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9314411/
https://www.ncbi.nlm.nih.gov/pubmed/35879280
http://dx.doi.org/10.1038/s41419-022-05106-y
_version_ 1784754316119113728
author Mavrogonatou, Eleni
Angelopoulou, Maria
Rizou, Sophia V.
Pratsinis, Harris
Gorgoulis, Vassilis G.
Kletsas, Dimitris
author_facet Mavrogonatou, Eleni
Angelopoulou, Maria
Rizou, Sophia V.
Pratsinis, Harris
Gorgoulis, Vassilis G.
Kletsas, Dimitris
author_sort Mavrogonatou, Eleni
collection PubMed
description Although UVB radiation is mainly absorbed by the epidermis, ~5–10% of its photons reach and affect the upper part of the dermis. Physiologically relevant UVB doses, able to provoke erythema, induce apoptosis in human dermal fibroblasts in vitro, as well as in the dermis of SKH-1 mice. Given the sparse and even contradictory existing information on the effect of UVB radiation on dermal fibroblasts’ viability, aim of this work was to unravel the crucial signaling pathways regulating the survival of UVB-treated human dermal fibroblasts. We found that UVB radiation immediately stimulates the phosphorylation of MAPK family members, as well as Akt, and is genotoxic leading to the delayed ATM-p53 axis activation. Akt phosphorylation after UVB radiation is EGFR-mediated and EGFR inhibition leads to a further decrease of viability, while the Akt activator SC79 rescues fibroblasts to an extent by a mechanism involving Nrf2 activation. The known Nrf2 activator sulforaphane also exerts a partial protective effect, although by acting in a distinct mechanism from SC79. On the other hand, inhibition of JNKs or of the ATM-p53 axis leads to a complete loss of viability after UVB irradiation. Interestingly, JNKs activation is necessary for p53 phosphorylation, while the ATM-p53 pathway is required for the long-term activation of JNKs and Akt, reassuring the protection from UVB. Although UVB radiation results in intense and prolonged increase of intracellular ROS levels, classical anti-oxidants, such as Trolox, are unable to affect Akt, JNKs, or p53 phosphorylation and to reverse the loss of fibroblasts’ viability. Collectively, here we provide evidence that the main viability-regulating UVB-triggered biochemical pathways act synergistically towards the protection of human dermal fibroblasts, with EGFR/Akt and Nrf2 serving as auxiliary anti-apoptotic machineries, while JNKs/ATM-p53 activation and interplay being overriding and indispensable for the perpetuation of cellular defense and the maintenance of cell viability.
format Online
Article
Text
id pubmed-9314411
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-93144112022-07-27 Activation of the JNKs/ATM-p53 axis is indispensable for the cytoprotection of dermal fibroblasts exposed to UVB radiation Mavrogonatou, Eleni Angelopoulou, Maria Rizou, Sophia V. Pratsinis, Harris Gorgoulis, Vassilis G. Kletsas, Dimitris Cell Death Dis Article Although UVB radiation is mainly absorbed by the epidermis, ~5–10% of its photons reach and affect the upper part of the dermis. Physiologically relevant UVB doses, able to provoke erythema, induce apoptosis in human dermal fibroblasts in vitro, as well as in the dermis of SKH-1 mice. Given the sparse and even contradictory existing information on the effect of UVB radiation on dermal fibroblasts’ viability, aim of this work was to unravel the crucial signaling pathways regulating the survival of UVB-treated human dermal fibroblasts. We found that UVB radiation immediately stimulates the phosphorylation of MAPK family members, as well as Akt, and is genotoxic leading to the delayed ATM-p53 axis activation. Akt phosphorylation after UVB radiation is EGFR-mediated and EGFR inhibition leads to a further decrease of viability, while the Akt activator SC79 rescues fibroblasts to an extent by a mechanism involving Nrf2 activation. The known Nrf2 activator sulforaphane also exerts a partial protective effect, although by acting in a distinct mechanism from SC79. On the other hand, inhibition of JNKs or of the ATM-p53 axis leads to a complete loss of viability after UVB irradiation. Interestingly, JNKs activation is necessary for p53 phosphorylation, while the ATM-p53 pathway is required for the long-term activation of JNKs and Akt, reassuring the protection from UVB. Although UVB radiation results in intense and prolonged increase of intracellular ROS levels, classical anti-oxidants, such as Trolox, are unable to affect Akt, JNKs, or p53 phosphorylation and to reverse the loss of fibroblasts’ viability. Collectively, here we provide evidence that the main viability-regulating UVB-triggered biochemical pathways act synergistically towards the protection of human dermal fibroblasts, with EGFR/Akt and Nrf2 serving as auxiliary anti-apoptotic machineries, while JNKs/ATM-p53 activation and interplay being overriding and indispensable for the perpetuation of cellular defense and the maintenance of cell viability. Nature Publishing Group UK 2022-07-25 /pmc/articles/PMC9314411/ /pubmed/35879280 http://dx.doi.org/10.1038/s41419-022-05106-y Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Mavrogonatou, Eleni
Angelopoulou, Maria
Rizou, Sophia V.
Pratsinis, Harris
Gorgoulis, Vassilis G.
Kletsas, Dimitris
Activation of the JNKs/ATM-p53 axis is indispensable for the cytoprotection of dermal fibroblasts exposed to UVB radiation
title Activation of the JNKs/ATM-p53 axis is indispensable for the cytoprotection of dermal fibroblasts exposed to UVB radiation
title_full Activation of the JNKs/ATM-p53 axis is indispensable for the cytoprotection of dermal fibroblasts exposed to UVB radiation
title_fullStr Activation of the JNKs/ATM-p53 axis is indispensable for the cytoprotection of dermal fibroblasts exposed to UVB radiation
title_full_unstemmed Activation of the JNKs/ATM-p53 axis is indispensable for the cytoprotection of dermal fibroblasts exposed to UVB radiation
title_short Activation of the JNKs/ATM-p53 axis is indispensable for the cytoprotection of dermal fibroblasts exposed to UVB radiation
title_sort activation of the jnks/atm-p53 axis is indispensable for the cytoprotection of dermal fibroblasts exposed to uvb radiation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9314411/
https://www.ncbi.nlm.nih.gov/pubmed/35879280
http://dx.doi.org/10.1038/s41419-022-05106-y
work_keys_str_mv AT mavrogonatoueleni activationofthejnksatmp53axisisindispensableforthecytoprotectionofdermalfibroblastsexposedtouvbradiation
AT angelopouloumaria activationofthejnksatmp53axisisindispensableforthecytoprotectionofdermalfibroblastsexposedtouvbradiation
AT rizousophiav activationofthejnksatmp53axisisindispensableforthecytoprotectionofdermalfibroblastsexposedtouvbradiation
AT pratsinisharris activationofthejnksatmp53axisisindispensableforthecytoprotectionofdermalfibroblastsexposedtouvbradiation
AT gorgoulisvassilisg activationofthejnksatmp53axisisindispensableforthecytoprotectionofdermalfibroblastsexposedtouvbradiation
AT kletsasdimitris activationofthejnksatmp53axisisindispensableforthecytoprotectionofdermalfibroblastsexposedtouvbradiation