Cargando…

Selective Coupling of 1,2‐Bis‐Boronic Esters at the more Substituted Site through Visible‐Light Activation of Electron Donor–Acceptor Complexes

1,2‐Bis‐boronic esters are useful synthetic intermediates particularly as the two boronic esters can be selectively functionalized. Usually, the less hindered primary boronic ester reacts, but herein, we report a coupling reaction that enables the reversal of this selectivity. This is achieved throu...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Hui, Wu, Jingjing, Noble, Adam, Aggarwal, Varinder K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9314813/
https://www.ncbi.nlm.nih.gov/pubmed/35213775
http://dx.doi.org/10.1002/anie.202202061
Descripción
Sumario:1,2‐Bis‐boronic esters are useful synthetic intermediates particularly as the two boronic esters can be selectively functionalized. Usually, the less hindered primary boronic ester reacts, but herein, we report a coupling reaction that enables the reversal of this selectivity. This is achieved through the formation of a boronate complex with an electron‐rich aryllithium which, in the presence of an electron‐deficient aryl nitrile, leads to the formation of an electron donor–acceptor complex. Following visible‐light photoinduced electron transfer, a primary radical is generated which isomerizes to the more stable secondary radical before radical‐radical coupling with the arene radical‐anion, giving β‐aryl primary boronic ester products. The reactions proceed under catalyst‐free conditions. This method also allows stereodivergent coupling of cyclic cis‐1,2‐bis‐boronic esters to provide trans‐substituted products, complementing the selectivity observed in the Suzuki–Miyaura reaction.