Cargando…
Application of Bidirectional Generative Adversarial Networks to Predict Potential miRNAs Associated With Diseases
Substantial evidence has shown that microRNAs are crucial for biological processes within complex human diseases. Identifying the association of miRNA–disease pairs will contribute to accelerating the discovery of potential biomarkers and pathogenesis. Researchers began to focus on constructing comp...
Autores principales: | Xu, Long, Li, Xiaokun, Yang, Qiang, Tan, Long, Liu, Qingyuan, Liu, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9314862/ https://www.ncbi.nlm.nih.gov/pubmed/35903359 http://dx.doi.org/10.3389/fgene.2022.936823 |
Ejemplares similares
-
BiGAN: LncRNA-disease association prediction based on bidirectional generative adversarial network
por: Yang, Qiang, et al.
Publicado: (2021) -
Electrocardiogram generation with a bidirectional LSTM-CNN generative adversarial network
por: Zhu, Fei, et al.
Publicado: (2019) -
A Systematic Way to Infer the Regulation Relations of miRNAs on Target Genes and Critical miRNAs in Cancers
por: Xu, Peng, et al.
Publicado: (2020) -
Low-Light Image Enhancement Based on Generative Adversarial Network
por: Abirami R., Nandhini, et al.
Publicado: (2021) -
Identification of Nitrogen Starvation-Responsive miRNAs to Reveal the miRNA-Mediated Regulatory Network in Betula luminifera
por: Lin, Yan, et al.
Publicado: (2022)