Cargando…
MEGH: A parametric class of general hazard models for clustered survival data
In many applications of survival data analysis, the individuals are treated in different medical centres or belong to different clusters defined by geographical or administrative regions. The analysis of such data requires accounting for between-cluster variability. Ignoring such variability would i...
Autores principales: | Rubio, Francisco Javier, Drikvandi, Reza |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9315191/ https://www.ncbi.nlm.nih.gov/pubmed/35668699 http://dx.doi.org/10.1177/09622802221102620 |
Ejemplares similares
-
Generalized Linear Models for Flexible Parametric Modeling of the Hazard Function
por: Kearns, Benjamin, et al.
Publicado: (2019) -
Instrumental variable estimation in semi‐parametric additive hazards models
por: Brueckner, Matthias, et al.
Publicado: (2018) -
Neural Survival Clustering: Non-parametric mixture of neural networks for survival clustering
por: Jeanselme, Vincent, et al.
Publicado: (2022) -
Incident Duration Modeling Using Flexible Parametric Hazard-Based Models
por: Li, Ruimin, et al.
Publicado: (2014) -
Evaluation of parametric models by the prediction error in colorectal cancer survival analysis
por: Baghestani, Ahmad Reza, et al.
Publicado: (2015)