Cargando…
A Hierarchical Graph Learning Model for Brain Network Regression Analysis
Brain networks have attracted increasing attention due to the potential to better characterize brain dynamics and abnormalities in neurological and psychiatric conditions. Recent years have witnessed enormous successes in deep learning. Many AI algorithms, especially graph learning methods, have bee...
Autores principales: | Tang, Haoteng, Guo, Lei, Fu, Xiyao, Qu, Benjamin, Ajilore, Olusola, Wang, Yalin, Thompson, Paul M., Huang, Heng, Leow, Alex D., Zhan, Liang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9315240/ https://www.ncbi.nlm.nih.gov/pubmed/35903810 http://dx.doi.org/10.3389/fnins.2022.963082 |
Ejemplares similares
-
rest2vec: Vectorizing the resting-state functional connectome using graph embedding
por: Morrissey, Zachery D., et al.
Publicado: (2020) -
Constructing the resting state structural connectome
por: Ajilore, Olusola, et al.
Publicado: (2013) -
Resting-state theta band connectivity and graph analysis in generalized social anxiety disorder
por: Xing, Mengqi, et al.
Publicado: (2016) -
A Review on Smartphone Keystroke Dynamics as a Digital Biomarker for Understanding Neurocognitive Functioning
por: Nguyen, Theresa M., et al.
Publicado: (2023) -
Disrupted excitation-inhibition balance in cognitively normal individuals at risk of Alzheimer’s disease
por: Fortel, Igor, et al.
Publicado: (2023)