Cargando…
Classification of Alzheimer’s Disease Based on Deep Learning of Brain Structural and Metabolic Data
To improve the diagnosis and classification of Alzheimer’s disease (AD), a modeling method is proposed based on the combining magnetic resonance images (MRI) brain structural data with metabolite levels of the frontal and parietal regions. First, multi-atlas brain segmentation technology based on T1...
Autores principales: | Wang, Huiquan, Feng, Tianzi, Zhao, Zhe, Bai, Xue, Han, Guang, Wang, Jinhai, Dai, Zongrui, Wang, Rong, Zhao, Weibiao, Ren, Fuxin, Gao, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9315355/ https://www.ncbi.nlm.nih.gov/pubmed/35903535 http://dx.doi.org/10.3389/fnagi.2022.927217 |
Ejemplares similares
-
Deep Learning-Based Classification and Voxel-Based Visualization of Frontotemporal Dementia and Alzheimer’s Disease
por: Hu, Jingjing, et al.
Publicado: (2021) -
Indoor Simulated Training Environment for Brain-Controlled Wheelchair Based on Steady-State Visual Evoked Potentials
por: Liu, Ming, et al.
Publicado: (2020) -
High-Frequency Cochlear Amplifier Dysfunction: A Dominating Contribution to the Cognitive-Ear Link
por: Wang, Yao, et al.
Publicado: (2022) -
Alzheimer's Disease Classification Through Imaging Genetic Data With IGnet
por: Wang, Jade Xiaoqing, et al.
Publicado: (2022) -
Classification of sleep apnea based on EEG sub-band signal characteristics
por: Zhao, Xiaoyun, et al.
Publicado: (2021)