Cargando…
Bridging Reinforcement Learning and Iterative Learning Control: Autonomous Motion Learning for Unknown, Nonlinear Dynamics
This work addresses the problem of reference tracking in autonomously learning robots with unknown, nonlinear dynamics. Existing solutions require model information or extensive parameter tuning, and have rarely been validated in real-world experiments. We propose a learning control scheme that lear...
Autores principales: | Meindl, Michael, Lehmann, Dustin, Seel, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9315427/ https://www.ncbi.nlm.nih.gov/pubmed/35903721 http://dx.doi.org/10.3389/frobt.2022.793512 |
Ejemplares similares
-
Motion Planning and Iterative Learning Control of a Modular Soft Robotic Snake
por: Luo, Ming, et al.
Publicado: (2020) -
Iterative Learning Control for Motion Trajectory Tracking of a Circular Soft Crawling Robot
por: Chi, Haozhen, et al.
Publicado: (2019) -
Deep Reinforcement Learning Controller for 3D Path Following and Collision Avoidance by Autonomous Underwater Vehicles
por: Havenstrøm, Simen Theie, et al.
Publicado: (2021) -
Reactive Reinforcement Learning in Asynchronous Environments
por: Travnik, Jaden B., et al.
Publicado: (2018) -
One-shot learning for autonomous aerial manipulation
por: Zito, Claudio, et al.
Publicado: (2022)