Cargando…
Identify Bitter Peptides by Using Deep Representation Learning Features
A bitter taste often identifies hazardous compounds and it is generally avoided by most animals and humans. Bitterness of hydrolyzed proteins is caused by the presence of bitter peptides. To improve palatability, bitter peptides need to be identified experimentally in a time-consuming and expensive...
Autores principales: | Jiang, Jici, Lin, Xinxu, Jiang, Yueqi, Jiang, Liangzhen, Lv, Zhibin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9315524/ https://www.ncbi.nlm.nih.gov/pubmed/35887225 http://dx.doi.org/10.3390/ijms23147877 |
Ejemplares similares
-
A Machine Learning Method to Identify Umami Peptide Sequences by Using Multiplicative LSTM Embedded Features
por: Jiang, Jici, et al.
Publicado: (2023) -
IUP-BERT: Identification of Umami Peptides Based on BERT Features
por: Jiang, Liangzhen, et al.
Publicado: (2022) -
Identification of sub-Golgi protein localization by use of deep representation learning features
por: Lv, Zhibin, et al.
Publicado: (2020) -
e-Bitter: Bitterant Prediction by the Consensus Voting From the Machine-Learning Methods
por: Zheng, Suqing, et al.
Publicado: (2018) -
Editorial: Feature Representation and Learning Methods With Applications in Protein Secondary Structure
por: Yan, Ni, et al.
Publicado: (2021)