Cargando…

Early Detection of Subsurface Fatigue Cracks in Rolling Element Bearings by the Knowledge-Based Analysis of Acoustic Emission

Aiming at early detection of subsurface cracks induced by contact fatigue in rotating machinery, the knowledge-based data analysis algorithm is proposed for health condition monitoring through the analysis of acoustic emission (AE) time series. A robust fault detector is proposed, and its effectiven...

Descripción completa

Detalles Bibliográficos
Autores principales: Hidle, Einar Løvli, Hestmo, Rune Harald, Adsen, Ove Sagen, Lange, Hans, Vinogradov, Alexei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9315545/
https://www.ncbi.nlm.nih.gov/pubmed/35890866
http://dx.doi.org/10.3390/s22145187
Descripción
Sumario:Aiming at early detection of subsurface cracks induced by contact fatigue in rotating machinery, the knowledge-based data analysis algorithm is proposed for health condition monitoring through the analysis of acoustic emission (AE) time series. A robust fault detector is proposed, and its effectiveness was demonstrated for the long-term durability test of a roller made of case-hardened steel. The reliability of subsurface crack detection was proven using independent ultrasonic inspections carried out periodically during the test. Subsurface cracks as small as 0.5 mm were identified, and their steady growth was tracked by the proposed AE technique. Challenges and perspectives of the proposed methodology are unveiled and discussed.