Cargando…

Application of Chaos Mutation Adaptive Sparrow Search Algorithm in Edge Data Compression

In view of the large amount of data collected by an edge server, when compression technology is used for data compression, data classification accuracy is reduced and data loss is large. This paper proposes a data compression algorithm based on the chaotic mutation adaptive sparrow search algorithm...

Descripción completa

Detalles Bibliográficos
Autores principales: Qiu, Shaoming, Li, Ao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9315631/
https://www.ncbi.nlm.nih.gov/pubmed/35891110
http://dx.doi.org/10.3390/s22145425
Descripción
Sumario:In view of the large amount of data collected by an edge server, when compression technology is used for data compression, data classification accuracy is reduced and data loss is large. This paper proposes a data compression algorithm based on the chaotic mutation adaptive sparrow search algorithm (CMASSA). Constructing a new fitness function, CMASSA optimizes the hyperparameters of the Convolutional Auto-Encoder Network (CAEN) on the cloud service center, aiming to obtain the optimal CAEN model. The model is sent to the edge server to compress the data at the lower level of edge computing. The effectiveness of CMASSA performance is tested on ten high-dimensional benchmark functions, and the results show that CMASSA outperforms other comparison algorithms. Subsequently, experiments are compared with other literature on the Multi-class Weather Dataset (MWD). Experiments show that under the premise of ensuring a certain compression ratio, the proposed algorithm not only has better accuracy in classification tasks than other algorithms but also maintains a high degree of data reconstruction.