Cargando…
A Method for Detection of Corn Kernel Mildew Based on Co-Clustering Algorithm with Hyperspectral Image Technology
Hyperspectral imaging can simultaneously acquire spectral and spatial information of the samples and is, therefore, widely applied in the non-destructive detection of grain quality. Supervised learning is the mainstream method of hyperspectral imaging for pixel-level detection of mildew in corn kern...
Autores principales: | Kang, Zhen, Huang, Tianchen, Zeng, Shan, Li, Hao, Dong, Lei, Zhang, Chaofan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9315692/ https://www.ncbi.nlm.nih.gov/pubmed/35891015 http://dx.doi.org/10.3390/s22145333 |
Ejemplares similares
-
Detection Method for Tomato Leaf Mildew Based on Hyperspectral Fusion Terahertz Technology
por: Zhang, Xiaodong, et al.
Publicado: (2023) -
Detection of Aflatoxin B(1) in Single Peanut Kernels by Combining Hyperspectral and Microscopic Imaging Technologies
por: Zhang, Haicheng, et al.
Publicado: (2022) -
Progressive Line Processing of Kernel RX Anomaly Detection Algorithm for Hyperspectral Imagery
por: Zhao, Chunhui, et al.
Publicado: (2017) -
Rapid nondestructive detection of peanut varieties and peanut mildew based on hyperspectral imaging and stacked machine learning models
por: Wu, Qingsong, et al.
Publicado: (2022) -
Prediction of Sweet Corn Seed Germination Based on Hyperspectral Image Technology and Multivariate Data Regression
por: Cui, Huawei, et al.
Publicado: (2020)