Cargando…
Immobilization of poly(vinyl pyrrolidone) in Polysulfone Membranes by Radically-Initiated Crosslinking Using Potassium Persulfate
Polysulfone (PSU) membranes with poly(vinyl pyrrolidone) (PVP) as a pore-forming and hydrophilic additive were prepared using the non-solvent-induced phase separation (NIPS) technique. PVP immobilization by radical-initiated crosslinking using potassium persulfate (KPS) was studied in view of obtain...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9315698/ https://www.ncbi.nlm.nih.gov/pubmed/35877867 http://dx.doi.org/10.3390/membranes12070664 |
_version_ | 1784754626793308160 |
---|---|
author | Gonzalez Ortiz, Danae Nouxet, Morgan Maréchal, William Lorain, Olivier Deratani, André Pochat-Bohatier, Céline |
author_facet | Gonzalez Ortiz, Danae Nouxet, Morgan Maréchal, William Lorain, Olivier Deratani, André Pochat-Bohatier, Céline |
author_sort | Gonzalez Ortiz, Danae |
collection | PubMed |
description | Polysulfone (PSU) membranes with poly(vinyl pyrrolidone) (PVP) as a pore-forming and hydrophilic additive were prepared using the non-solvent-induced phase separation (NIPS) technique. PVP immobilization by radical-initiated crosslinking using potassium persulfate (KPS) was studied in view of obtaining membranes with high and long-lasting surface hydrophilicity. A method based on the ATR-FTIR technique was developed to discriminate crosslinked PVP from unreacted PVP in the membrane. The crosslinking progress was investigated as a function of temperature, KPS concentration, and reaction time. The results showed that temperature was the main factor influencing the crosslinking reaction since radical formation is temperature-dependent. Increasing the concentration of KPS and the reaction time led to an increase in the crosslinking rate. The effect of the degree of PVP crosslinking on the structure and properties of the prepared membranes was examined by studying mechanical properties, morphology by SEM, surface hydrophilicity by contact angle measurements, and water permeability. |
format | Online Article Text |
id | pubmed-9315698 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93156982022-07-27 Immobilization of poly(vinyl pyrrolidone) in Polysulfone Membranes by Radically-Initiated Crosslinking Using Potassium Persulfate Gonzalez Ortiz, Danae Nouxet, Morgan Maréchal, William Lorain, Olivier Deratani, André Pochat-Bohatier, Céline Membranes (Basel) Article Polysulfone (PSU) membranes with poly(vinyl pyrrolidone) (PVP) as a pore-forming and hydrophilic additive were prepared using the non-solvent-induced phase separation (NIPS) technique. PVP immobilization by radical-initiated crosslinking using potassium persulfate (KPS) was studied in view of obtaining membranes with high and long-lasting surface hydrophilicity. A method based on the ATR-FTIR technique was developed to discriminate crosslinked PVP from unreacted PVP in the membrane. The crosslinking progress was investigated as a function of temperature, KPS concentration, and reaction time. The results showed that temperature was the main factor influencing the crosslinking reaction since radical formation is temperature-dependent. Increasing the concentration of KPS and the reaction time led to an increase in the crosslinking rate. The effect of the degree of PVP crosslinking on the structure and properties of the prepared membranes was examined by studying mechanical properties, morphology by SEM, surface hydrophilicity by contact angle measurements, and water permeability. MDPI 2022-06-28 /pmc/articles/PMC9315698/ /pubmed/35877867 http://dx.doi.org/10.3390/membranes12070664 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gonzalez Ortiz, Danae Nouxet, Morgan Maréchal, William Lorain, Olivier Deratani, André Pochat-Bohatier, Céline Immobilization of poly(vinyl pyrrolidone) in Polysulfone Membranes by Radically-Initiated Crosslinking Using Potassium Persulfate |
title | Immobilization of poly(vinyl pyrrolidone) in Polysulfone Membranes by Radically-Initiated Crosslinking Using Potassium Persulfate |
title_full | Immobilization of poly(vinyl pyrrolidone) in Polysulfone Membranes by Radically-Initiated Crosslinking Using Potassium Persulfate |
title_fullStr | Immobilization of poly(vinyl pyrrolidone) in Polysulfone Membranes by Radically-Initiated Crosslinking Using Potassium Persulfate |
title_full_unstemmed | Immobilization of poly(vinyl pyrrolidone) in Polysulfone Membranes by Radically-Initiated Crosslinking Using Potassium Persulfate |
title_short | Immobilization of poly(vinyl pyrrolidone) in Polysulfone Membranes by Radically-Initiated Crosslinking Using Potassium Persulfate |
title_sort | immobilization of poly(vinyl pyrrolidone) in polysulfone membranes by radically-initiated crosslinking using potassium persulfate |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9315698/ https://www.ncbi.nlm.nih.gov/pubmed/35877867 http://dx.doi.org/10.3390/membranes12070664 |
work_keys_str_mv | AT gonzalezortizdanae immobilizationofpolyvinylpyrrolidoneinpolysulfonemembranesbyradicallyinitiatedcrosslinkingusingpotassiumpersulfate AT nouxetmorgan immobilizationofpolyvinylpyrrolidoneinpolysulfonemembranesbyradicallyinitiatedcrosslinkingusingpotassiumpersulfate AT marechalwilliam immobilizationofpolyvinylpyrrolidoneinpolysulfonemembranesbyradicallyinitiatedcrosslinkingusingpotassiumpersulfate AT lorainolivier immobilizationofpolyvinylpyrrolidoneinpolysulfonemembranesbyradicallyinitiatedcrosslinkingusingpotassiumpersulfate AT derataniandre immobilizationofpolyvinylpyrrolidoneinpolysulfonemembranesbyradicallyinitiatedcrosslinkingusingpotassiumpersulfate AT pochatbohatierceline immobilizationofpolyvinylpyrrolidoneinpolysulfonemembranesbyradicallyinitiatedcrosslinkingusingpotassiumpersulfate |