Cargando…

Optimal Reuse Design Scheduling of Mine Water Based on Improved Whale Algorithm

The optimal scheduling of mine water is a multi-objective, multi-constraint, nonlinear, multi-stage combination of optimization problems, in view of the traditional solution methods with the increase in decision-making variable dimensions facing a large amount of computation, “dimensional disaster”...

Descripción completa

Detalles Bibliográficos
Autores principales: Yue, Yuangan, Liu, Yang, Bo, Lei, Zhang, Zihang, Yang, Hongwei, Wang, Yiying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9315798/
https://www.ncbi.nlm.nih.gov/pubmed/35890936
http://dx.doi.org/10.3390/s22145256
Descripción
Sumario:The optimal scheduling of mine water is a multi-objective, multi-constraint, nonlinear, multi-stage combination of optimization problems, in view of the traditional solution methods with the increase in decision-making variable dimensions facing a large amount of computation, “dimensional disaster” and other problems, the introduction of a new intelligent simulation algorithm—the Whale Optimization Algorithm to solve the optimal scheduling problem of mine water. Aiming at the problem that the Whale Optimization Algorithm itself is prone to local optimization and slow convergence, it has been improved by improving its own parameters and introducing the inertia weight of the particle swarm and has achieved more obvious results. According to the actual situation of Nalinhe No. 2 Mine, the mathematical model of multi-target optimization of mine water is established based on the function of reuse time and reuse cost of mine water as the target function, and the balance of supply and demand of mine water, the water quality requirements of water use points at all levels, the water quantity requirements of reservoirs and the priority of water supply as the constraints. The improved Whale Optimization Algorithm was used to search optimal solution, and the results showed that the adaptability value of the improved Whale Optimization Algorithm was significantly improved compared with before, of which 8.65% and 7.69% were increased in the heating season and non-heating season, and the rate of cost reduction was 46.80% and 36.92%, and the iteration efficiency was also significantly improved, which improved the decision-making efficiency of optimal scheduling and became more suitable for the actual scheduling needs of Nalinhe No. 2 mine.