Cargando…
Distance- and Momentum-Based Symbolic Aggregate Approximation for Highly Imbalanced Classification
Time-series representation is the most important task in time-series analysis. One of the most widely employed time-series representation method is symbolic aggregate approximation (SAX), which converts the results from piecewise aggregate approximation to a symbol sequence. SAX is a simple and effe...
Autores principales: | Yang, Dong-Hyuk, Kang, Yong-Shin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9315809/ https://www.ncbi.nlm.nih.gov/pubmed/35890775 http://dx.doi.org/10.3390/s22145095 |
Ejemplares similares
-
Evolutionary Mahalanobis Distance-Based Oversampling for Multi-Class Imbalanced Data Classification
por: Yao, Leehter, et al.
Publicado: (2021) -
Effects of Non-Symbolic Approximate Number Practice on Symbolic Numerical Abilities in Pakistani Children
por: Khanum, Saeeda, et al.
Publicado: (2016) -
Adaptive Fusion Based Method for Imbalanced Data Classification
por: Liang, Zefeng, et al.
Publicado: (2022) -
The Use of Hellinger Distance Undersampling Model to Improve the Classification of Disease Class in Imbalanced Medical Datasets
por: Al-Shamaa, Zina Z. R., et al.
Publicado: (2020) -
Retracted: The Use of Hellinger Distance Undersampling Model to Improve the Classification of Disease Class in Imbalanced Medical Datasets
por: and Biomechanics, Applied Bionics
Publicado: (2023)