Cargando…
LGCCT: A Light Gated and Crossed Complementation Transformer for Multimodal Speech Emotion Recognition
Semantic-rich speech emotion recognition has a high degree of popularity in a range of areas. Speech emotion recognition aims to recognize human emotional states from utterances containing both acoustic and linguistic information. Since both textual and audio patterns play essential roles in speech...
Autores principales: | Liu, Feng, Shen, Si-Yuan, Fu, Zi-Wang, Wang, Han-Yang, Zhou, Ai-Min, Qi, Jia-Yin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9316084/ https://www.ncbi.nlm.nih.gov/pubmed/35885233 http://dx.doi.org/10.3390/e24071010 |
Ejemplares similares
-
Multimodal transformer augmented fusion for speech emotion recognition
por: Wang, Yuanyuan, et al.
Publicado: (2023) -
Multimodal and Spectral Degradation Effects on Speech and Emotion
Recognition in Adult Listeners
por: Ritter, Chantel, et al.
Publicado: (2018) -
A Survey of Deep Learning-Based Multimodal Emotion Recognition: Speech, Text, and Face
por: Lian, Hailun, et al.
Publicado: (2023) -
Establishment and psychometric characteristics of emotional words list for suicidal risk assessment in speech emotion recognition
por: Shen, Juan, et al.
Publicado: (2022) -
Robust Multimodal Emotion Recognition from Conversation with Transformer-Based Crossmodality Fusion
por: Xie, Baijun, et al.
Publicado: (2021)