Cargando…
Depth Estimation for Integral Imaging Microscopy Using a 3D–2D CNN with a Weighted Median Filter
This study proposes a robust depth map framework based on a convolutional neural network (CNN) to calculate disparities using multi-direction epipolar plane images (EPIs). A combination of three-dimensional (3D) and two-dimensional (2D) CNN-based deep learning networks is used to extract the feature...
Autores principales: | Imtiaz, Shariar Md, Kwon, Ki-Chul, Hossain, Md. Biddut, Alam, Md. Shahinur, Jeon, Seok-Hee, Kim, Nam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9316143/ https://www.ncbi.nlm.nih.gov/pubmed/35890968 http://dx.doi.org/10.3390/s22145288 |
Ejemplares similares
-
De-Aliasing and Accelerated Sparse Magnetic Resonance Image Reconstruction Using Fully Dense CNN with Attention Gates
por: Hossain, Md. Biddut, et al.
Publicado: (2022) -
Trajectory-Based Air-Writing Recognition Using Deep Neural Network and Depth Sensor
por: Alam, Md. Shahinur, et al.
Publicado: (2020) -
A Hybrid Residual Attention Convolutional Neural Network for Compressed Sensing Magnetic Resonance Image Reconstruction
por: Hossain, Md. Biddut, et al.
Publicado: (2023) -
Squeeze-MNet: Precise Skin Cancer Detection Model for Low Computing IoT Devices Using Transfer Learning
por: Shinde, Rupali Kiran, et al.
Publicado: (2022) -
High-Quality 3D Visualization System for Light-Field Microscopy with Fine-Scale Shape Measurement through Accurate 3D Surface Data
por: Kwon, Ki Hoon, et al.
Publicado: (2023)