Cargando…
On the Solutions of a Quadratic Integral Equation of the Urysohn Type of Fractional Variable Order
In this manuscript we introduce a quadratic integral equation of the Urysohn type of fractional variable order. The existence and uniqueness of solutions of the proposed fractional model are studied by transforming it into an integral equation of fractional constant order. The obtained new results a...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9316200/ https://www.ncbi.nlm.nih.gov/pubmed/35885108 http://dx.doi.org/10.3390/e24070886 |
_version_ | 1784754749848944640 |
---|---|
author | Benkerrouche, Amar Souid, Mohammed Said Stamov, Gani Stamova, Ivanka |
author_facet | Benkerrouche, Amar Souid, Mohammed Said Stamov, Gani Stamova, Ivanka |
author_sort | Benkerrouche, Amar |
collection | PubMed |
description | In this manuscript we introduce a quadratic integral equation of the Urysohn type of fractional variable order. The existence and uniqueness of solutions of the proposed fractional model are studied by transforming it into an integral equation of fractional constant order. The obtained new results are based on the Schauder’s fixed-point theorem and the Banach contraction principle with the help of piece-wise constant functions. Although the used methods are very powerful, they are not applied to the quadratic integral equation of the Urysohn type of fractional variable order. With this research we extend the applicability of these techniques to the introduced the Urysohn type model of fractional variable order. The applicability of the new results are demonstrated by providing Ulam–Hyers stability criteria and an example. Moreover, the presented results lead to future progress and expansion of the theory of fractional-order models, as well as of the concept of entropy in the framework of fractional calculus. Further, an example is constructed to demonstrate the reasonableness and effectiveness of the observed results. |
format | Online Article Text |
id | pubmed-9316200 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93162002022-07-27 On the Solutions of a Quadratic Integral Equation of the Urysohn Type of Fractional Variable Order Benkerrouche, Amar Souid, Mohammed Said Stamov, Gani Stamova, Ivanka Entropy (Basel) Article In this manuscript we introduce a quadratic integral equation of the Urysohn type of fractional variable order. The existence and uniqueness of solutions of the proposed fractional model are studied by transforming it into an integral equation of fractional constant order. The obtained new results are based on the Schauder’s fixed-point theorem and the Banach contraction principle with the help of piece-wise constant functions. Although the used methods are very powerful, they are not applied to the quadratic integral equation of the Urysohn type of fractional variable order. With this research we extend the applicability of these techniques to the introduced the Urysohn type model of fractional variable order. The applicability of the new results are demonstrated by providing Ulam–Hyers stability criteria and an example. Moreover, the presented results lead to future progress and expansion of the theory of fractional-order models, as well as of the concept of entropy in the framework of fractional calculus. Further, an example is constructed to demonstrate the reasonableness and effectiveness of the observed results. MDPI 2022-06-27 /pmc/articles/PMC9316200/ /pubmed/35885108 http://dx.doi.org/10.3390/e24070886 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Benkerrouche, Amar Souid, Mohammed Said Stamov, Gani Stamova, Ivanka On the Solutions of a Quadratic Integral Equation of the Urysohn Type of Fractional Variable Order |
title | On the Solutions of a Quadratic Integral Equation of the Urysohn Type of Fractional Variable Order |
title_full | On the Solutions of a Quadratic Integral Equation of the Urysohn Type of Fractional Variable Order |
title_fullStr | On the Solutions of a Quadratic Integral Equation of the Urysohn Type of Fractional Variable Order |
title_full_unstemmed | On the Solutions of a Quadratic Integral Equation of the Urysohn Type of Fractional Variable Order |
title_short | On the Solutions of a Quadratic Integral Equation of the Urysohn Type of Fractional Variable Order |
title_sort | on the solutions of a quadratic integral equation of the urysohn type of fractional variable order |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9316200/ https://www.ncbi.nlm.nih.gov/pubmed/35885108 http://dx.doi.org/10.3390/e24070886 |
work_keys_str_mv | AT benkerroucheamar onthesolutionsofaquadraticintegralequationoftheurysohntypeoffractionalvariableorder AT souidmohammedsaid onthesolutionsofaquadraticintegralequationoftheurysohntypeoffractionalvariableorder AT stamovgani onthesolutionsofaquadraticintegralequationoftheurysohntypeoffractionalvariableorder AT stamovaivanka onthesolutionsofaquadraticintegralequationoftheurysohntypeoffractionalvariableorder |