Cargando…
Identifying Terpenoid Biosynthesis Genes in Euphorbia maculata via Full-Length cDNA Sequencing
The annual herb Euphorbia maculata L. produces anti-inflammatory and biologically active substances such as triterpenoids, tannins, and polyphenols, and it is used in traditional Chinese medicine. Of these bioactive compounds, terpenoids, also called isoprenoids, are major secondary metabolites in E...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9316252/ https://www.ncbi.nlm.nih.gov/pubmed/35889464 http://dx.doi.org/10.3390/molecules27144591 |
_version_ | 1784754764486017024 |
---|---|
author | Jeon, Mi Jin Roy, Neha Samir Choi, Beom-Soon Oh, Ji Yeon Kim, Yong-In Park, Hye Yoon Um, Taeyoung Kim, Nam-Soo Kim, Soonok Choi, Ik-Young |
author_facet | Jeon, Mi Jin Roy, Neha Samir Choi, Beom-Soon Oh, Ji Yeon Kim, Yong-In Park, Hye Yoon Um, Taeyoung Kim, Nam-Soo Kim, Soonok Choi, Ik-Young |
author_sort | Jeon, Mi Jin |
collection | PubMed |
description | The annual herb Euphorbia maculata L. produces anti-inflammatory and biologically active substances such as triterpenoids, tannins, and polyphenols, and it is used in traditional Chinese medicine. Of these bioactive compounds, terpenoids, also called isoprenoids, are major secondary metabolites in E. maculata. Full-length cDNA sequencing was carried out to characterize the transcripts of terpenoid biosynthesis reference genes and determine the copy numbers of their isoforms using PacBio SMRT sequencing technology. The Illumina short-read sequencing platform was also employed to identify differentially expressed genes (DEGs) in the secondary metabolite pathways from leaves, roots, and stems. PacBio generated 62 million polymerase reads, resulting in 81,433 high-quality reads. From these high-quality reads, we reconstructed a genome of 20,722 genes, in which 20,246 genes (97.8%) did not have paralogs. About 33% of the identified genes had two or more isoforms. DEG analysis revealed that the expression level differed among gene paralogs in the leaf, stem, and root. Whole sets of paralogs and isoforms were identified in the mevalonic acid (MVA), methylerythritol phosphate (MEP), and terpenoid biosynthesis pathways in the E. maculata L. The nucleotide information will be useful for identifying orthologous genes in other terpenoid-producing medicinal plants. |
format | Online Article Text |
id | pubmed-9316252 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93162522022-07-27 Identifying Terpenoid Biosynthesis Genes in Euphorbia maculata via Full-Length cDNA Sequencing Jeon, Mi Jin Roy, Neha Samir Choi, Beom-Soon Oh, Ji Yeon Kim, Yong-In Park, Hye Yoon Um, Taeyoung Kim, Nam-Soo Kim, Soonok Choi, Ik-Young Molecules Article The annual herb Euphorbia maculata L. produces anti-inflammatory and biologically active substances such as triterpenoids, tannins, and polyphenols, and it is used in traditional Chinese medicine. Of these bioactive compounds, terpenoids, also called isoprenoids, are major secondary metabolites in E. maculata. Full-length cDNA sequencing was carried out to characterize the transcripts of terpenoid biosynthesis reference genes and determine the copy numbers of their isoforms using PacBio SMRT sequencing technology. The Illumina short-read sequencing platform was also employed to identify differentially expressed genes (DEGs) in the secondary metabolite pathways from leaves, roots, and stems. PacBio generated 62 million polymerase reads, resulting in 81,433 high-quality reads. From these high-quality reads, we reconstructed a genome of 20,722 genes, in which 20,246 genes (97.8%) did not have paralogs. About 33% of the identified genes had two or more isoforms. DEG analysis revealed that the expression level differed among gene paralogs in the leaf, stem, and root. Whole sets of paralogs and isoforms were identified in the mevalonic acid (MVA), methylerythritol phosphate (MEP), and terpenoid biosynthesis pathways in the E. maculata L. The nucleotide information will be useful for identifying orthologous genes in other terpenoid-producing medicinal plants. MDPI 2022-07-19 /pmc/articles/PMC9316252/ /pubmed/35889464 http://dx.doi.org/10.3390/molecules27144591 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Jeon, Mi Jin Roy, Neha Samir Choi, Beom-Soon Oh, Ji Yeon Kim, Yong-In Park, Hye Yoon Um, Taeyoung Kim, Nam-Soo Kim, Soonok Choi, Ik-Young Identifying Terpenoid Biosynthesis Genes in Euphorbia maculata via Full-Length cDNA Sequencing |
title | Identifying Terpenoid Biosynthesis Genes in Euphorbia maculata via Full-Length cDNA Sequencing |
title_full | Identifying Terpenoid Biosynthesis Genes in Euphorbia maculata via Full-Length cDNA Sequencing |
title_fullStr | Identifying Terpenoid Biosynthesis Genes in Euphorbia maculata via Full-Length cDNA Sequencing |
title_full_unstemmed | Identifying Terpenoid Biosynthesis Genes in Euphorbia maculata via Full-Length cDNA Sequencing |
title_short | Identifying Terpenoid Biosynthesis Genes in Euphorbia maculata via Full-Length cDNA Sequencing |
title_sort | identifying terpenoid biosynthesis genes in euphorbia maculata via full-length cdna sequencing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9316252/ https://www.ncbi.nlm.nih.gov/pubmed/35889464 http://dx.doi.org/10.3390/molecules27144591 |
work_keys_str_mv | AT jeonmijin identifyingterpenoidbiosynthesisgenesineuphorbiamaculataviafulllengthcdnasequencing AT roynehasamir identifyingterpenoidbiosynthesisgenesineuphorbiamaculataviafulllengthcdnasequencing AT choibeomsoon identifyingterpenoidbiosynthesisgenesineuphorbiamaculataviafulllengthcdnasequencing AT ohjiyeon identifyingterpenoidbiosynthesisgenesineuphorbiamaculataviafulllengthcdnasequencing AT kimyongin identifyingterpenoidbiosynthesisgenesineuphorbiamaculataviafulllengthcdnasequencing AT parkhyeyoon identifyingterpenoidbiosynthesisgenesineuphorbiamaculataviafulllengthcdnasequencing AT umtaeyoung identifyingterpenoidbiosynthesisgenesineuphorbiamaculataviafulllengthcdnasequencing AT kimnamsoo identifyingterpenoidbiosynthesisgenesineuphorbiamaculataviafulllengthcdnasequencing AT kimsoonok identifyingterpenoidbiosynthesisgenesineuphorbiamaculataviafulllengthcdnasequencing AT choiikyoung identifyingterpenoidbiosynthesisgenesineuphorbiamaculataviafulllengthcdnasequencing |