Cargando…

Serum neurofilament light reflects cognitive dysfunctions in children with obstructive sleep apnea

BACKGROUND: In children, obstructive sleep apnea (OSA) can cause cognitive dysfunctions. Amyloid-beta and tau are elevated in OSA. Neurofilament light (NfL) is a marker of neuro-axonal damage, but there are no reports of NfL for OSA. The objective was to investigate the serum levels of NfL and tau i...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Yewen, Feng, Yani, Chen, Xi, Ma, Lina, Cao, Zine, Shang, Lei, Zhao, Bingjie, She, Ningning, Zhang, Yitong, Si, Chao, Liu, Haiqin, Zhao, Junjie, Ren, Xiaoyong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9316320/
https://www.ncbi.nlm.nih.gov/pubmed/35879699
http://dx.doi.org/10.1186/s12887-022-03514-9
Descripción
Sumario:BACKGROUND: In children, obstructive sleep apnea (OSA) can cause cognitive dysfunctions. Amyloid-beta and tau are elevated in OSA. Neurofilament light (NfL) is a marker of neuro-axonal damage, but there are no reports of NfL for OSA. The objective was to investigate the serum levels of NfL and tau in children with or without OSA and explore their relationship with cognitive dysfunctions caused by OSA. METHODS: This retrospective case–control study included children diagnosed with adenoid tonsil hypertrophy from July 2017 to September 2019 at the Second Affiliated Hospital of Xi’an Jiaotong University. Correlations between cognitive scores and tau and NfL were examined. RESULTS: Fifty-six OSA and 49 non-OSA children were included. The serum NfL levels were higher in the OSA group (31.68 (27.29–36.07) pg/ml) than in the non-OSA group (19.13 (17.32–20.95) pg/ml) (P < 0.001). Moreover, NfL was correlated with the course of the disease, apnea–hypopnea index (AHI), obstructive apnea index (OAI), obstructive apnea–hypopnea index (OAHI), average oxygen saturation (SaO(2)), respiratory arousal index (RAI), and cognitive dysfunctions evaluated by the Chinese Wechsler Intelligence Scale for Children (C-WISC) (all P < 0.05). The area under the receiver operating characteristics curve (AUC) of NfL was 0.816 (95%CI: 0.736–0.897). Multiple regression analysis revealed that NfL was significantly associated with verbal intelligence quotient (VIQ), performance intelligence quotient (PIQ) and full-scale intelligence quotient (FIQ) (P < 0.001, respectively). CONCLUSIONS: Serum NfL levels are associated with the severity of cognitive dysfunctions in children diagnosed with adenoid tonsil hypertrophy and might be a candidate noninvasive, objective marker to identify cognitive dysfunctions in children with OSA.