Cargando…
Survival prediction models: an introduction to discrete-time modeling
BACKGROUND: Prediction models for time-to-event outcomes are commonly used in biomedical research to obtain subject-specific probabilities that aid in making important clinical care decisions. There are several regression and machine learning methods for building these models that have been designed...
Autores principales: | Suresh, Krithika, Severn, Cameron, Ghosh, Debashis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9316420/ https://www.ncbi.nlm.nih.gov/pubmed/35883032 http://dx.doi.org/10.1186/s12874-022-01679-6 |
Ejemplares similares
-
A Pipeline for the Implementation and Visualization of Explainable Machine Learning for Medical Imaging Using Radiomics Features
por: Severn, Cameron, et al.
Publicado: (2022) -
An introduction to discrete-valued time series
por: Weiss, Christian
Publicado: (2017) -
Modeling Discrete Survival Time Using Genomic Feature Data
por: Ferber, Kyle, et al.
Publicado: (2015) -
A scalable discrete-time survival model for neural networks
por: Gensheimer, Michael F., et al.
Publicado: (2019) -
Continuous and discrete-time survival prediction with neural networks
por: Kvamme, Håvard, et al.
Publicado: (2021)