Cargando…
On the Parametrization of Epidemiologic Models—Lessons from Modelling COVID-19 Epidemic
Numerous prediction models of SARS-CoV-2 pandemic were proposed in the past. Unknown parameters of these models are often estimated based on observational data. However, lag in case-reporting, changing testing policy or incompleteness of data lead to biased estimates. Moreover, parametrization is ti...
Autores principales: | Kheifetz, Yuri, Kirsten, Holger, Scholz, Markus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9316470/ https://www.ncbi.nlm.nih.gov/pubmed/35891447 http://dx.doi.org/10.3390/v14071468 |
Ejemplares similares
-
Modeling individual time courses of thrombopoiesis during multi-cyclic chemotherapy
por: Kheifetz, Yuri, et al.
Publicado: (2019) -
Individual modelling of haematotoxicity with NARX neural networks: A knowledge transfer approach()()()()
por: Steinacker, Marie, et al.
Publicado: (2023) -
Regional forecasting of COVID-19 caseload by non-parametric regression: a VAR epidemiological model
por: Shang, Aaron C, et al.
Publicado: (2021) -
Lessons from the epidemiological investigation efforts during the COVID-19 epidemic in Israel: Liron Inchi
por: Inchi, L, et al.
Publicado: (2022) -
Bayesian non-parametric inference for stochastic epidemic models using Gaussian Processes
por: Xu, Xiaoguang, et al.
Publicado: (2016)