Cargando…
Learning from Knowledge Graphs: Neural Fine-Grained Entity Typing with Copy-Generation Networks
Fine-grained entity typing (FET) aims to identify the semantic type of an entity in a plain text, which is a significant task for downstream natural language processing applications. However, most existing methods neglect rich known typing information about these entities in knowledge graphs. To add...
Autores principales: | Yu, Zongjian, Zhang, Anxiang, Feng, Huali, Du, Huaming, Wei, Shaopeng, Zhao, Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9316539/ https://www.ncbi.nlm.nih.gov/pubmed/35885187 http://dx.doi.org/10.3390/e24070964 |
Ejemplares similares
-
Knowledge Graph Entity Alignment with Graph Convolutional Networks: Lessons Learned
por: Berrendorf, Max, et al.
Publicado: (2020) -
Leverage knowledge graph and GCN for fine-grained-level clickbait detection
por: Zhou, Mengxi, et al.
Publicado: (2022) -
Embedding Learning with Triple Trustiness on Noisy Knowledge Graph
por: Zhao, Yu, et al.
Publicado: (2019) -
A Knowledge Graph Entity Disambiguation Method Based on Entity-Relationship Embedding and Graph Structure Embedding
por: Ma, Jiangtao, et al.
Publicado: (2021) -
Joint Word and Entity Embeddings for Entity Retrieval from a Knowledge Graph
por: Nikolaev, Fedor, et al.
Publicado: (2020)