Cargando…

Silencing of a Cotton Actin-Binding Protein GhWLIM1C Decreases Resistance against Verticillium dahliae Infection

LIM proteins are widely spread in various types of plant cells and play diversely crucial cellular roles through actin cytoskeleton assembly and gene expression regulation. Till now, it has not been clear whether LIM proteins function in plant pathogen defense. In this study, we characterized a LIM...

Descripción completa

Detalles Bibliográficos
Autores principales: Cao, Tingyan, Qin, Minghui, Zhu, Shuai, Li, Yuanbao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9316592/
https://www.ncbi.nlm.nih.gov/pubmed/35890462
http://dx.doi.org/10.3390/plants11141828
Descripción
Sumario:LIM proteins are widely spread in various types of plant cells and play diversely crucial cellular roles through actin cytoskeleton assembly and gene expression regulation. Till now, it has not been clear whether LIM proteins function in plant pathogen defense. In this study, we characterized a LIM protein, GhWLIM1C, in upland cotton (Gossypium hirsutum). We found that GhWLIM1C could bind and bundle the actin cytoskeleton, and it contains two LIM domains (LIM1 and LIM2). Both the two domains could bind directly to the actin filaments. Moreover, the LIM2 domain additionally bundles the actin cytoskeleton, indicating that it possesses a different biochemical activity than LIM1. The expression of GhWLIM1C responds to the infection of the cotton fungal pathogen Verticillium dahliae (V. dahliae). Silencing of GhWLIM1C decreased cotton resistance to V. dahliae. These may be associated with the down regulated plant defense response, including the PR genes expression and ROS accumulation in the infected cotton plants. In all, these results provide new evidence that a plant LIM protein functions in plant pathogen resistance and the assembly of the actin cytoskeleton are closely related to the triggering of the plant defense response.