Cargando…
Evaluating methods for Lasso selective inference in biomedical research: a comparative simulation study
BACKGROUND: Variable selection for regression models plays a key role in the analysis of biomedical data. However, inference after selection is not covered by classical statistical frequentist theory, which assumes a fixed set of covariates in the model. This leads to over-optimistic selection and r...
Autores principales: | Kammer, Michael, Dunkler, Daniela, Michiels, Stefan, Heinze, Georg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9316707/ https://www.ncbi.nlm.nih.gov/pubmed/35883041 http://dx.doi.org/10.1186/s12874-022-01681-y |
Ejemplares similares
-
Variable selection – A review and recommendations for the practicing statistician
por: Heinze, Georg, et al.
Publicado: (2018) -
Selection of variables for multivariable models: Opportunities and limitations in quantifying model stability by resampling
por: Wallisch, Christine, et al.
Publicado: (2020) -
A fast lasso-based method for inferring higher-order interactions
por: Elmes, Kieran, et al.
Publicado: (2022) -
Time-lagged Ordered Lasso for network inference
por: Nguyen, Phan, et al.
Publicado: (2018) -
Augmented Backward Elimination: A Pragmatic and Purposeful Way to Develop Statistical Models
por: Dunkler, Daniela, et al.
Publicado: (2014)