Cargando…

Impact of ASFV Detergent Inactivation on Biomarkers in Serum and Saliva Samples

African swine fever (ASF) is a notifiable viral disease of domestic and wild suids. Despite intensive research efforts, the pathogenesis of the disease is still far from being understood. Analysis of biomarkers in different body fluids may supplement traditional pathogenesis studies. As reliable pro...

Descripción completa

Detalles Bibliográficos
Autores principales: Franco-Martínez, Lorena, Beer, Martin, Martínez-Subiela, Silvia, García-Manzanilla, Edgar, Blome, Sandra, Carrau, Tessa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9316758/
https://www.ncbi.nlm.nih.gov/pubmed/35889994
http://dx.doi.org/10.3390/pathogens11070750
Descripción
Sumario:African swine fever (ASF) is a notifiable viral disease of domestic and wild suids. Despite intensive research efforts, the pathogenesis of the disease is still far from being understood. Analysis of biomarkers in different body fluids may supplement traditional pathogenesis studies. As reliable protocols are often established in laboratories with lower biosafety, the reliable inactivation of samples is crucial. The objective of this study was to find a procedure that inactivates the virus while preserving the biomarkers for downstream analyses. To this means, three different inactivation protocols were employed, namely Tergitol-type NP-40 (NP-40), polyoxyethylene-p-t-octylphenol (Triton X-100) and one with 95 °C heating. It could be demonstrated that all samples treated with 0.5% (v/v) concentration of both detergents showed an absence of virus infectivity. The same was true for heated samples. However, heated serum was not suitable for analyses. Next, the impact of treatment on biomarker readouts was assessed. While all protocols had an impact on the detection of biomarkers, correlation was retained. In particular, NP-40 may be the desired detergent for more accurate measurements while achieving efficient virus inactivation. Based on these studies, samples can be reliably inactivated for most biomarker analyses, and thus broader interdisciplinary cooperation is possible.