Cargando…
Analysis of Information Availability for Seismic and Volcanic Monitoring Systems: A Review
Organizations responsible for seismic and volcanic monitoring worldwide mainly gather information from instrumental networks composed of specialized sensors, data-loggers, and transmission equipment. This information must be available in seismological data centers to improve early warning diffusion....
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9316848/ https://www.ncbi.nlm.nih.gov/pubmed/35890867 http://dx.doi.org/10.3390/s22145186 |
Sumario: | Organizations responsible for seismic and volcanic monitoring worldwide mainly gather information from instrumental networks composed of specialized sensors, data-loggers, and transmission equipment. This information must be available in seismological data centers to improve early warning diffusion. Furthermore, this information is necessary for research purposes to improve the understanding of the phenomena. However, the acquisition data systems could have some information gaps due to unstable connections with instrumental networks and repeater nodes or exceeded waiting times in data acquisition processes. In this work, we performed a systematic review around information availability issues and solutions in data acquisition systems, instrumental networks, and their interplay with transmission media for seismic and volcanic monitoring. Based on the SLR methodology proposed by Kitchenham, B., a search string strategy was considered where 1938 articles were found until December 2021. Subsequently, through selection processes, 282 articles were obtained and 51 relevant articles were extracted using filters based on the content of articles mainly referring to seismic–volcanic data acquisition, data formats, monitoring networks, and early warnings. As a result, we identified two independent partial solutions that could complement each other. One focused on extracting information in the acquisition systems corresponding to continuous data generated by the monitoring points through the development of mechanisms for identifying sequential files. The other solution focused on the detection and assessment of the alternative transmission media capabilities available in the seismic–volcanic monitoring network. Moreover, we point out the advantage of a unified solution by identifying data files/plots corresponding to information gaps. These could be recovered through alternate/backup transmission channels to the monitoring points to improve the availability of the information that contributes to real-time access to information from seismic–volcanic monitoring networks, which speeds up data recovery processes. |
---|