Cargando…
An Enhanced Multiple Sclerosis Disease Diagnosis via an Ensemble Approach
Multiple Sclerosis (MS) is a disease attacking the central nervous system. According to MS Atlas’s most recent statistics, there are more than 2.8 million people worldwide diagnosed with MS. Recently, studies started to explore machine learning techniques to predict MS using various data. The object...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9316893/ https://www.ncbi.nlm.nih.gov/pubmed/35885672 http://dx.doi.org/10.3390/diagnostics12071771 |
_version_ | 1784754924836356096 |
---|---|
author | Torkey, Hanaa Belal, Nahla A. |
author_facet | Torkey, Hanaa Belal, Nahla A. |
author_sort | Torkey, Hanaa |
collection | PubMed |
description | Multiple Sclerosis (MS) is a disease attacking the central nervous system. According to MS Atlas’s most recent statistics, there are more than 2.8 million people worldwide diagnosed with MS. Recently, studies started to explore machine learning techniques to predict MS using various data. The objective of this paper is to develop an ensemble approach for diagnosis of MS using gene expression profiles, while handling the class imbalance problem associated with the data. A hierarchical ensemble approach employing voting and boosting techniques is proposed. This approach adopts a heterogeneous voting approach using two base learners, random forest and support vector machine. Experiments show that our approach outperforms state-of-the-art methods, with the highest recorded accuracy being 92.81% and 93.5% with BoostFS and DEGs for feature selection, respectively. Conclusively, the proposed approach is able to efficiently diagnose MS using the gene expression profiles that are more relevant to the disease. The approach is not merely an ensemble classifier outperforming previous work; it also identifies differentially expressed genes between normal samples and patients with multiple sclerosis using a genome-wide expression microarray. The results obtained show that the proposed approach is an efficient diagnostic tool for MS. |
format | Online Article Text |
id | pubmed-9316893 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93168932022-07-27 An Enhanced Multiple Sclerosis Disease Diagnosis via an Ensemble Approach Torkey, Hanaa Belal, Nahla A. Diagnostics (Basel) Article Multiple Sclerosis (MS) is a disease attacking the central nervous system. According to MS Atlas’s most recent statistics, there are more than 2.8 million people worldwide diagnosed with MS. Recently, studies started to explore machine learning techniques to predict MS using various data. The objective of this paper is to develop an ensemble approach for diagnosis of MS using gene expression profiles, while handling the class imbalance problem associated with the data. A hierarchical ensemble approach employing voting and boosting techniques is proposed. This approach adopts a heterogeneous voting approach using two base learners, random forest and support vector machine. Experiments show that our approach outperforms state-of-the-art methods, with the highest recorded accuracy being 92.81% and 93.5% with BoostFS and DEGs for feature selection, respectively. Conclusively, the proposed approach is able to efficiently diagnose MS using the gene expression profiles that are more relevant to the disease. The approach is not merely an ensemble classifier outperforming previous work; it also identifies differentially expressed genes between normal samples and patients with multiple sclerosis using a genome-wide expression microarray. The results obtained show that the proposed approach is an efficient diagnostic tool for MS. MDPI 2022-07-21 /pmc/articles/PMC9316893/ /pubmed/35885672 http://dx.doi.org/10.3390/diagnostics12071771 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Torkey, Hanaa Belal, Nahla A. An Enhanced Multiple Sclerosis Disease Diagnosis via an Ensemble Approach |
title | An Enhanced Multiple Sclerosis Disease Diagnosis via an Ensemble Approach |
title_full | An Enhanced Multiple Sclerosis Disease Diagnosis via an Ensemble Approach |
title_fullStr | An Enhanced Multiple Sclerosis Disease Diagnosis via an Ensemble Approach |
title_full_unstemmed | An Enhanced Multiple Sclerosis Disease Diagnosis via an Ensemble Approach |
title_short | An Enhanced Multiple Sclerosis Disease Diagnosis via an Ensemble Approach |
title_sort | enhanced multiple sclerosis disease diagnosis via an ensemble approach |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9316893/ https://www.ncbi.nlm.nih.gov/pubmed/35885672 http://dx.doi.org/10.3390/diagnostics12071771 |
work_keys_str_mv | AT torkeyhanaa anenhancedmultiplesclerosisdiseasediagnosisviaanensembleapproach AT belalnahlaa anenhancedmultiplesclerosisdiseasediagnosisviaanensembleapproach AT torkeyhanaa enhancedmultiplesclerosisdiseasediagnosisviaanensembleapproach AT belalnahlaa enhancedmultiplesclerosisdiseasediagnosisviaanensembleapproach |