Cargando…
In Vitro Analysis of Extracts of Plant Used in Mexican Traditional Medicine, Which Are Useful to Combat Clostridioides difficile Infection
Recently, a worrying acceleration of the emergence of antibiotic-resistant bacteria has been reported. The increase in antibiotic-associated diseases, such as Clostridioides difficile infection (CDI), has promoted research on new treatments that could be more effective and less aggressive for CDI pa...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9316953/ https://www.ncbi.nlm.nih.gov/pubmed/35890019 http://dx.doi.org/10.3390/pathogens11070774 |
Sumario: | Recently, a worrying acceleration of the emergence of antibiotic-resistant bacteria has been reported. The increase in antibiotic-associated diseases, such as Clostridioides difficile infection (CDI), has promoted research on new treatments that could be more effective and less aggressive for CDI patients. This study evaluates eight plants with antimicrobial activity commonly used in Mexican traditional medicine to evaluate their potential against C. difficile. We provide essential information about these plants’ activities and action mechanisms against C. difficile and their effect on different bacterial infection activities: motility, adherence, sporulation, and germination. The selected plants are rosemary, estafiate, rue, epazote, mint, toloache, ajenjo, and thyme. We used clinical isolates to test their activity against strains responsible for current outbreaks to provide more information about the clinical impact of these extracts. We found that thyme, ajenjo, and mint were the most effective against the isolates. We identified that the extracts affected protein synthesis. In addition, the extracts affect the strains’ motility, and some, such as thyme extract, affect adherence, whereas rue extract affects sporulation. These results led to the identification of new compounds beneficial to CDI treatment. |
---|