Cargando…
Machine Learning Model Based on Lipidomic Profile Information to Predict Sudden Infant Death Syndrome
Sudden infant death syndrome (SIDS) represents the leading cause of death in under one year of age in developing countries. Even in our century, its etiology is not clear, and there is no biomarker that is discriminative enough to predict the risk of suffering from it. Therefore, in this work, takin...
Autores principales: | Villagrana-Bañuelos, Karen E., Galván-Tejada, Carlos E., Galván-Tejada, Jorge I., Gamboa-Rosales, Hamurabi, Celaya-Padilla, José M., Soto-Murillo, Manuel A., Solís-Robles, Roberto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317003/ https://www.ncbi.nlm.nih.gov/pubmed/35885829 http://dx.doi.org/10.3390/healthcare10071303 |
Ejemplares similares
-
Univariate Analysis of Short-Chain Fatty Acids Related to Sudden Infant Death Syndrome
por: Galván-Tejada, Carlos E., et al.
Publicado: (2020) -
Demographic and Comorbidities Data Description of Population in Mexico with SARS-CoV-2 Infected Patients(COVID19): An Online Tool Analysis
por: Galván-Tejada, Carlos E., et al.
Publicado: (2020) -
Multimodal Early Alzheimer’s Detection, a Genetic Algorithm Approach with Support Vector Machines
por: Sánchez-Reyna, Ana G., et al.
Publicado: (2021) -
Automatic Evaluation of Heart Condition According to the Sounds Emitted and Implementing Six Classification Methods
por: Soto-Murillo, Manuel A., et al.
Publicado: (2021) -
Identification of People with Diabetes Treatment through Lipids Profile Using Machine Learning Algorithms
por: Alcalá-Rmz, Vanessa, et al.
Publicado: (2021)