Cargando…
Detecting Errors with Zero-Shot Learning
Error detection is a critical step in data cleaning. Most traditional error detection methods are based on rules and external information with high cost, especially when dealing with large-scaled data. Recently, with the advances of deep learning, some researchers focus their attention on learning t...
Autores principales: | Wu, Xiaoyu, Wang, Ning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317027/ https://www.ncbi.nlm.nih.gov/pubmed/35885159 http://dx.doi.org/10.3390/e24070936 |
Ejemplares similares
-
Zero-shot stance detection: Paradigms and challenges
por: Allaway, Emily, et al.
Publicado: (2023) -
Feature Selection Methods for Zero-Shot Learning of Neural Activity
por: Caceres, Carlos A., et al.
Publicado: (2017) -
Semantic-visual shared knowledge graph for zero-shot learning
por: Yu, Beibei, et al.
Publicado: (2023) -
System alignment supports cross-domain learning and zero-shot generalisation
por: Aho, Kaarina, et al.
Publicado: (2022) -
Zero-shot learning of aerosol optical properties with graph neural networks
por: Lamb, K. D., et al.
Publicado: (2023)