Cargando…
Improved Variational Mode Decomposition and CNN for Intelligent Rotating Machinery Fault Diagnosis
This paper proposes an intelligent diagnosis method for rotating machinery faults based on improved variational mode decomposition (IVMD) and CNN to process the rotating machinery non-stationary signal. Firstly, to solve the problem of time-domain feature extraction for fault diagnosis, this paper p...
Autores principales: | Xiao, Qiyang, Li, Sen, Zhou, Lin, Shi, Wentao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317035/ https://www.ncbi.nlm.nih.gov/pubmed/35885131 http://dx.doi.org/10.3390/e24070908 |
Ejemplares similares
-
Fault Diagnosis of Rotating Machinery Based on an Adaptive Ensemble Empirical Mode Decomposition
por: Lei, Yaguo, et al.
Publicado: (2013) -
An Imbalanced Fault Diagnosis Method Based on TFFO and CNN for Rotating Machinery
por: Zhang, Long, et al.
Publicado: (2022) -
Noise Eliminated Ensemble Empirical Mode Decomposition Scalogram Analysis for Rotating Machinery Fault Diagnosis
por: Faysal, Atik, et al.
Publicado: (2021) -
A Novel Deep Learning Method for Intelligent Fault Diagnosis of Rotating Machinery Based on Improved CNN-SVM and Multichannel Data Fusion
por: Gong, Wenfeng, et al.
Publicado: (2019) -
Research on Fault Diagnosis of Gearbox with Improved Variational Mode Decomposition
por: Wang, Zhijian, et al.
Publicado: (2018)