Cargando…
A Feasibility Study on Deep Learning Based Brain Tumor Segmentation Using 2D Ellipse Box Areas
In most deep learning-based brain tumor segmentation methods, training the deep network requires annotated tumor areas. However, accurate tumor annotation puts high demands on medical personnel. The aim of this study is to train a deep network for segmentation by using ellipse box areas surrounding...
Autores principales: | Ali, Muhaddisa Barat, Bai, Xiaohan, Gu, Irene Yu-Hua, Berger, Mitchel S., Jakola, Asgeir Store |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317052/ https://www.ncbi.nlm.nih.gov/pubmed/35890972 http://dx.doi.org/10.3390/s22145292 |
Ejemplares similares
-
Prediction of glioma-subtypes: comparison of performance on a DL classifier using bounding box areas versus annotated tumors
por: Ali, Muhaddisa Barat, et al.
Publicado: (2022) -
A novel federated deep learning scheme for glioma and its subtype classification
por: Ali, Muhaddisa Barat, et al.
Publicado: (2023) -
Domain Mapping and Deep Learning from Multiple MRI Clinical Datasets for Prediction of Molecular Subtypes in Low Grade Gliomas
por: Ali, Muhaddisa Barat, et al.
Publicado: (2020) -
Deep semi-supervised learning for brain tumor classification
por: Ge, Chenjie, et al.
Publicado: (2020) -
Deep learning for automatic brain tumour segmentation on MRI: evaluation of recommended reporting criteria via a reproduction and replication study
por: Gryska, Emilia, et al.
Publicado: (2022)