Cargando…
Influence of a Deep Learning Noise Reduction on the CT Values, Image Noise and Characterization of Kidney and Ureter Stones
Deep-learning (DL) noise reduction techniques in computed tomography (CT) are expected to reduce the image noise while maintaining the clinically relevant information in reduced dose acquisitions. This study aimed to assess the size, attenuation, and objective image quality of reno-ureteric stones d...
Autores principales: | Steuwe, Andrea, Valentin, Birte, Bethge, Oliver T., Ljimani, Alexandra, Niegisch, Günter, Antoch, Gerald, Aissa, Joel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317055/ https://www.ncbi.nlm.nih.gov/pubmed/35885532 http://dx.doi.org/10.3390/diagnostics12071627 |
Ejemplares similares
-
Noise insertion in CT for cocaine body packing: where is the limit of extensive dose reduction?
por: Aissa, Joel, et al.
Publicado: (2018) -
Noise reduction profile: A new method for evaluation of noise reduction techniques in CT
por: Hasegawa, Akira, et al.
Publicado: (2021) -
Impact of increasing levels of adaptive statistical iterative reconstruction on image quality in oil-based postmortem CT angiography in coronary arteries
por: Steuwe, Andrea, et al.
Publicado: (2021) -
Stacked competitive networks for noise reduction in low-dose CT
por: Du, Wenchao, et al.
Publicado: (2017) -
Two Cases of "Stone in the Ureter"
por: Hatch, W. K.
Publicado: (1900)