Cargando…
A supervised protein complex prediction method with network representation learning and gene ontology knowledge
BACKGROUND: Protein complexes are essential for biologists to understand cell organization and function effectively. In recent years, predicting complexes from protein–protein interaction (PPI) networks through computational methods is one of the current research hotspots. Many methods for protein c...
Autores principales: | Wang, Xiaoxu, Zhang, Yijia, Zhou, Peixuan, Liu, Xiaoxia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317086/ https://www.ncbi.nlm.nih.gov/pubmed/35879648 http://dx.doi.org/10.1186/s12859-022-04850-4 |
Ejemplares similares
-
Construction of Ontology Augmented Networks for Protein Complex Prediction
por: Zhang, Yijia, et al.
Publicado: (2013) -
Concepts, ontologies, and knowledge representation
por: Jakus, Grega, et al.
Publicado: (2013) -
The representation of protein complexes in the Protein Ontology (PRO)
por: Bult, Carol J, et al.
Publicado: (2011) -
Predicting protein complex in protein interaction network - a supervised learning based method
por: Yu, Feng Ying, et al.
Publicado: (2014) -
Ontologies, Knowledge Representation, and Machine Learning for Translational Research: Recent Contributions
por: Robinson, Peter N., et al.
Publicado: (2020)