Cargando…
StainCUT: Stain Normalization with Contrastive Learning
In recent years, numerous deep-learning approaches have been developed for the analysis of histopathology Whole Slide Images (WSI). A recurrent issue is the lack of generalization ability of a model that has been trained with images of one laboratory and then used to analyze images of a different la...
Autores principales: | Gutiérrez Pérez, José Carlos, Otero Baguer, Daniel, Maass, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317097/ https://www.ncbi.nlm.nih.gov/pubmed/35877646 http://dx.doi.org/10.3390/jimaging8070202 |
Ejemplares similares
-
StainNet: A Fast and Robust Stain Normalization Network
por: Kang, Hongtao, et al.
Publicado: (2021) -
Section Cutting and Staining: A Practical Guide to the Preparation of Normal and Morbid Histological Specimens
Publicado: (1889) -
Improving unsupervised stain-to-stain translation using self-supervision and meta-learning
por: Bouteldja, Nassim, et al.
Publicado: (2022) -
Deep learning-based transformation of H&E stained tissues into special stains
por: de Haan, Kevin, et al.
Publicado: (2021) -
Phenazopyridine as an innovative stain for permanent staining of trematodes
por: Fakhar, Mahdi, et al.
Publicado: (2016)