Cargando…
Domain Adaptation with Data Uncertainty Measure Based on Evidence Theory
Domain adaptation aims to learn a classifier for a target domain task by using related labeled data from the source domain. Because source domain data and target domain task may be mismatched, there is an uncertainty of source domain data with respect to the target domain task. Ignoring the uncertai...
Autores principales: | Lv, Ying, Zhang, Bofeng, Zou, Guobing, Yue, Xiaodong, Xu, Zhikang, Li, Haiyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317131/ https://www.ncbi.nlm.nih.gov/pubmed/35885189 http://dx.doi.org/10.3390/e24070966 |
Ejemplares similares
-
Measuring uncertainty within the theory of evidence
por: Salicone, Simona, et al.
Publicado: (2018) -
Measurement uncertainty: an approach via the mathematical theory of evidence
por: Salicone, Simona
Publicado: (2007) -
CR-GCN: Channel-Relationships-Based Graph Convolutional Network for EEG Emotion Recognition
por: Jia, Jingjing, et al.
Publicado: (2022) -
Deep Link-Prediction Based on the Local Structure of Bipartite Networks
por: Lv, Hehe, et al.
Publicado: (2022) -
An Improved Total Uncertainty Measure in the Evidence Theory and Its Application in Decision Making
por: Qin, Miao, et al.
Publicado: (2020)