Cargando…
S-MAT: Semantic-Driven Masked Attention Transformer for Multi-Label Aerial Image Classification
Multi-label aerial scene image classification is a long-standing and challenging research problem in the remote sensing field. As land cover objects usually co-exist in an aerial scene image, modeling label dependencies is a compelling approach to improve the performance. Previous methods generally...
Autores principales: | Wu, Hongjun, Xu, Cheng, Liu, Hongzhe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317133/ https://www.ncbi.nlm.nih.gov/pubmed/35891109 http://dx.doi.org/10.3390/s22145433 |
Ejemplares similares
-
Recurrently exploring class-wise attention in a hybrid convolutional and bidirectional LSTM network for multi-label aerial image classification
por: Hua, Yuansheng, et al.
Publicado: (2019) -
Attention-Based Context Aware Network for Semantic Comprehension of Aerial Scenery
por: Shi, Weipeng, et al.
Publicado: (2021) -
High-Resolution Aerial Imagery Semantic Labeling with Dense Pyramid Network
por: Pan, Xuran, et al.
Publicado: (2018) -
A Multi-Step Fusion Network for Semantic Segmentation of High-Resolution Aerial Images
por: Yuan, Yirong, et al.
Publicado: (2023) -
Multi-Label Fundus Image Classification Using Attention Mechanisms and Feature Fusion
por: Li, Zhenwei, et al.
Publicado: (2022)