Cargando…
Intelligent Fault Diagnosis of Industrial Robot Based on Multiclass Mahalanobis-Taguchi System for Imbalanced Data
One of the biggest challenges for the fault diagnosis research of industrial robots is that the normal data is far more than the fault data; that is, the data is imbalanced. The traditional diagnosis approaches of industrial robots are more biased toward the majority categories, which makes the diag...
Autores principales: | Sun, Yue, Xu, Aidong, Wang, Kai, Zhou, Xiufang, Guo, Haifeng, Han, Xiaojia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317314/ https://www.ncbi.nlm.nih.gov/pubmed/35885094 http://dx.doi.org/10.3390/e24070871 |
Ejemplares similares
-
Adaptive Multiclass Mahalanobis Taguchi System for Bearing Fault Diagnosis under Variable Conditions
por: Wang, Ning, et al.
Publicado: (2018) -
The Mahalanobis-Taguchi system /
por: Taguchi, Genichi, 1924-
Publicado: (2001) -
Modified Mahalanobis Taguchi System for Imbalance Data Classification
por: El-Banna, Mahmoud
Publicado: (2017) -
Optimized Mahalanobis–Taguchi System for High-Dimensional Small Sample Data Classification
por: Xiao, Xinping, et al.
Publicado: (2020) -
Evolutionary Mahalanobis Distance-Based Oversampling for Multi-Class Imbalanced Data Classification
por: Yao, Leehter, et al.
Publicado: (2021)