Cargando…

Statistical Simulation, a Tool for the Process Optimization of Oily Wastewater by Crossflow Ultrafiltration

This work aims to determine the optimized ultrafiltration conditions for industrial wastewater treatment loaded with oil and heavy metals generated from an electroplating industry for water reuse in the industrial process. A ceramic multitubular membrane was used for the almost total retention of oi...

Descripción completa

Detalles Bibliográficos
Autores principales: Aloulou, Hajer, Attia, Afef, Aloulou, Wala, Chakraborty, Sudip, Baklouti, Lassaad, Dammak, Lasaad, Amar, Raja Ben
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317332/
https://www.ncbi.nlm.nih.gov/pubmed/35877879
http://dx.doi.org/10.3390/membranes12070676
Descripción
Sumario:This work aims to determine the optimized ultrafiltration conditions for industrial wastewater treatment loaded with oil and heavy metals generated from an electroplating industry for water reuse in the industrial process. A ceramic multitubular membrane was used for the almost total retention of oil and turbidity, and the high removal of heavy metals such as Pb, Zn, and Cu (>95%) was also applied. The interactive effects of the initial oil concentration (19–117 g/L), feed temperature (20–60 °C), and applied transmembrane pressure (2–5 bar) on the chemical oxygen demand removal (RCOD) and permeate flux (Jw) were investigated. A Box–Behnken experimental design (BBD) for response surface methodology (RSM) was used for the statistical analysis, modelling, and optimization of operating conditions. The analysis of variance (ANOVA) results showed that the COD removal and permeate flux were significant since they showed good correlation coefficients of 0.985 and 0.901, respectively. Mathematical modelling revealed that the best conditions were an initial oil concentration of 117 g/L and a feed temperature of 60 °C, under a transmembrane pressure of 3.5 bar. In addition, the effect of the concentration under the optimized conditions was studied. It was found that the maximum volume concentrating factor (VCF) value was equal to five and that the pollutant retention was independent of the VCF. The fouling mechanism was estimated by applying Hermia’s model. The results indicated that the membrane fouling given by the decline in the permeate flux over time could be described by the cake filtration model. Finally, the efficiency of the membrane regeneration was proved by determining the water permeability after the chemical cleaning process.