Cargando…

Multiple Receptors Involved in Invasion and Neuropathogenicity of Canine Distemper Virus: A Review

The canine distemper virus (CDV) is a morbillivirus that infects a broad range of terrestrial carnivores, predominantly canines, and is associated with high mortality. Similar to another morbillivirus, measles virus, which infects humans and nonhuman primates, CDV transmission from an infected host...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Jianjun, Ren, Yanrong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317347/
https://www.ncbi.nlm.nih.gov/pubmed/35891500
http://dx.doi.org/10.3390/v14071520
Descripción
Sumario:The canine distemper virus (CDV) is a morbillivirus that infects a broad range of terrestrial carnivores, predominantly canines, and is associated with high mortality. Similar to another morbillivirus, measles virus, which infects humans and nonhuman primates, CDV transmission from an infected host to a naïve host depends on two cellular receptors, namely, the signaling lymphocyte activation molecule (SLAM or CD150) and the adherens junction protein nectin-4 (also known as PVRL4). CDV can also invade the central nervous system by anterograde spread through olfactory nerves or in infected lymphocytes through the circulation, thus causing chronic progressive or relapsing demyelination of the brain. However, the absence of the two receptors in the white matter, primary cultured astrocytes, and neurons in the brain was recently demonstrated. Furthermore, a SLAM/nectin-4-blind recombinant CDV exhibits full cell-to-cell transmission in primary astrocytes. This strongly suggests the existence of a third CDV receptor expressed in neural cells, possibly glial cells. In this review, we summarize the recent progress in the study of CDV receptors, highlighting the unidentified glial receptor and its contribution to pathogenicity in the host nervous system. The reviewed studies focus on CDV neuropathogenesis, and neural receptors may provide promising directions for the treatment of neurological diseases caused by CDV. We also present an overview of other neurotropic viruses to promote further research and identification of CDV neural receptors.