Cargando…

Role of Group I Metabotropic Glutamate Receptors in Spike Timing-Dependent Plasticity

Metabotropic glutamate receptors (mGluRs) are G-protein-coupled receptors that exhibit enormous diversity in their expression patterns, sequence homology, pharmacology, biophysical properties and signaling pathways in the brain. In general, mGluRs modulate different traits of neuronal physiology, in...

Descripción completa

Detalles Bibliográficos
Autores principales: Martínez-Gallego, Irene, Rodríguez-Moreno, Antonio, Andrade-Talavera, Yuniesky
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317389/
https://www.ncbi.nlm.nih.gov/pubmed/35887155
http://dx.doi.org/10.3390/ijms23147807
Descripción
Sumario:Metabotropic glutamate receptors (mGluRs) are G-protein-coupled receptors that exhibit enormous diversity in their expression patterns, sequence homology, pharmacology, biophysical properties and signaling pathways in the brain. In general, mGluRs modulate different traits of neuronal physiology, including excitability and plasticity processes. Particularly, group I mGluRs located at the pre- or postsynaptic compartments are involved in spike timing-dependent plasticity (STDP) at hippocampal and neocortical synapses. Their roles of participating in the underlying mechanisms for detection of activity coincidence in STDP induction are debated, and diverse findings support models involving mGluRs in STDP forms in which NMDARs do not operate as classical postsynaptic coincidence detectors. Here, we briefly review the involvement of group I mGluRs in STDP and their possible role as coincidence detectors.