Cargando…
Anion Exchange Membranes for Fuel Cells Based on Quaternized Polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene Triblock Copolymers with Spacer-Sidechain Design
This work studied the polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS) triblock copolymers functionalized by butyl quaternary ammonium (C(4)Q) groups and alkyl side chains of different chain lengths (C(n), n = 0 to 24). The hydrated membrane morphology was modeled by dissipative particl...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317406/ https://www.ncbi.nlm.nih.gov/pubmed/35890636 http://dx.doi.org/10.3390/polym14142860 |
_version_ | 1784755048900722688 |
---|---|
author | Chen, Qun-Gao Lee, Ming-Tsung |
author_facet | Chen, Qun-Gao Lee, Ming-Tsung |
author_sort | Chen, Qun-Gao |
collection | PubMed |
description | This work studied the polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS) triblock copolymers functionalized by butyl quaternary ammonium (C(4)Q) groups and alkyl side chains of different chain lengths (C(n), n = 0 to 24). The hydrated membrane morphology was modeled by dissipative particle dynamics simulation at hydration levels from 10 to 30. A hydroxide model was devised to characterize the diffusivity of anions under the coarse-grained framework. In general, the ionomers with alkyl side chains provided ion conductivity of a similar level at a lower ion exchange capacity. All hydrated SEBS–C(4)Q–C(n) ionomers showed clear phase separation of the hydrophobic and hydrophilic domains, featuring 18.6 mS/cm to 36.8 mS/cm ion conductivity. The hydrophilic channels expanded as the water content increased, forming more effective ion conductive pathways. Introducing excess alkyl side chains enhanced the nano-segregation, leading to more ordered structures and longer correlation lengths of the aqueous phase. The membrane morphology was controlled by the length of alkyl side-chains as well as their tethering positions. Ionomers with functionalized side chains tethered on the same block resulted in well-connective water networks and higher conductivities. The detailed structural analysis provides synthesis guidelines to fabricate anion exchange membranes with improved performances. |
format | Online Article Text |
id | pubmed-9317406 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93174062022-07-27 Anion Exchange Membranes for Fuel Cells Based on Quaternized Polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene Triblock Copolymers with Spacer-Sidechain Design Chen, Qun-Gao Lee, Ming-Tsung Polymers (Basel) Article This work studied the polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS) triblock copolymers functionalized by butyl quaternary ammonium (C(4)Q) groups and alkyl side chains of different chain lengths (C(n), n = 0 to 24). The hydrated membrane morphology was modeled by dissipative particle dynamics simulation at hydration levels from 10 to 30. A hydroxide model was devised to characterize the diffusivity of anions under the coarse-grained framework. In general, the ionomers with alkyl side chains provided ion conductivity of a similar level at a lower ion exchange capacity. All hydrated SEBS–C(4)Q–C(n) ionomers showed clear phase separation of the hydrophobic and hydrophilic domains, featuring 18.6 mS/cm to 36.8 mS/cm ion conductivity. The hydrophilic channels expanded as the water content increased, forming more effective ion conductive pathways. Introducing excess alkyl side chains enhanced the nano-segregation, leading to more ordered structures and longer correlation lengths of the aqueous phase. The membrane morphology was controlled by the length of alkyl side-chains as well as their tethering positions. Ionomers with functionalized side chains tethered on the same block resulted in well-connective water networks and higher conductivities. The detailed structural analysis provides synthesis guidelines to fabricate anion exchange membranes with improved performances. MDPI 2022-07-13 /pmc/articles/PMC9317406/ /pubmed/35890636 http://dx.doi.org/10.3390/polym14142860 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chen, Qun-Gao Lee, Ming-Tsung Anion Exchange Membranes for Fuel Cells Based on Quaternized Polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene Triblock Copolymers with Spacer-Sidechain Design |
title | Anion Exchange Membranes for Fuel Cells Based on Quaternized Polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene Triblock Copolymers with Spacer-Sidechain Design |
title_full | Anion Exchange Membranes for Fuel Cells Based on Quaternized Polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene Triblock Copolymers with Spacer-Sidechain Design |
title_fullStr | Anion Exchange Membranes for Fuel Cells Based on Quaternized Polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene Triblock Copolymers with Spacer-Sidechain Design |
title_full_unstemmed | Anion Exchange Membranes for Fuel Cells Based on Quaternized Polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene Triblock Copolymers with Spacer-Sidechain Design |
title_short | Anion Exchange Membranes for Fuel Cells Based on Quaternized Polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene Triblock Copolymers with Spacer-Sidechain Design |
title_sort | anion exchange membranes for fuel cells based on quaternized polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene triblock copolymers with spacer-sidechain design |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9317406/ https://www.ncbi.nlm.nih.gov/pubmed/35890636 http://dx.doi.org/10.3390/polym14142860 |
work_keys_str_mv | AT chenqungao anionexchangemembranesforfuelcellsbasedonquaternizedpolystyrenebpolyethylenecobutylenebpolystyrenetriblockcopolymerswithspacersidechaindesign AT leemingtsung anionexchangemembranesforfuelcellsbasedonquaternizedpolystyrenebpolyethylenecobutylenebpolystyrenetriblockcopolymerswithspacersidechaindesign |